
Personal Website: https://fenglong-ma.github.io/
Penn State Data Science Lab: https://psudslab.github.io/

Learning Healthcare Foundation Models: 
From Pre-training to Fine-tuning

Fenglong Ma, Ph.D.

College of Information Sciences and Technology
Pennsylvania State University
fenglong@psu.edu



Healthcare Foundation Models: From Pre-training to Fine-tuning

Foundation 
Models

https://blogs.nvidia.com/blog/what-are-foundation-models/
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Foundation Models in General Domain
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Medical Foundation Models

• LLaVA-Med

https://github.com/microsoft/LLaVA-Med

Image + Text
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Multimodal Electronic Health Records (EHR)
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National Trends in Hospital and Physician Adoption of EHR

Office of the National 
Coordinator for Health 
Information Technology. 
‘National Trends in Hospital 
and Physician Adoption of 
Electronic Health 
Records,’ Health IT Quick-Stat 
#61.
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Ideal Healthcare/Medical Foundation Models

https://hai.stanford.edu/news/how-foundation-models-can-advance-ai-healthcare
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Challenges of EHR Data
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Hierarchical Multi-sourced

Wang et al., Hierarchical Pretraining on Multimodal Electronic 
Health Records, EMNLP’23

Wang et al., Unity in Diversity: Collaborative Pre-training Across 
Multimodal Medical Sources, ACL’24
Wang et al., FedMeKI: A Benchmark for Scaling Medical
Foundation Models via Federated Knowledge Injection, under review
Wang et al., FedKIM: Adaptive Federated Knowledge Injection into 
Medical Foundation Models, under review
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Hierarchical Pretraining on Multimodal Electronic Health Records

Xiaochen Wang, Junyu Luo, Jiaqi Wang, Ziyi Yin, Suhan Cui, Yuan Zhong, 
Yaqing Wang and Fenglong Ma

Proceedings of the 2023 Conference on Empirical Methods in Natural 
Language Processing (EMNLP 2023)
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Hierarchical Pretraining on Multimodal Electronic Health Records

• Prediction tasks vary across hierarchies.
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Hierarchical Pretraining on Multimodal Electronic Health Records

• Multimodal and heterogeneous EHR data
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MedHMP: Hierarchical Multimodal Pretraining for Medicine

• Bottom-to-up Pretraining
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Stay-level Self-supervised Pretraining

• Clinical Feature Reconstruction
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Admission-level Pretraining

• Admission-level Feature Encoding
• ICD Codes & Drug Codes

• Clinical Note

• Clinical Monitoring Readings
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Admission-level Pretraining

• Intra-modality Mask Code Prediction
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Admission-level Pretraining

• Inter-modality Contrastive Learning
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Admission-level Pretraining Loss
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Training MedHMP
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Experiments

• Stay-level Evaluation
• Acute respiratory failure (ARF)
• Shock
• Mortality 
• Within 48 hours

• Admission-level Evaluation
• Readmission prediction 
• Within 30 days
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Experiments

• Patient-level Evaluation
• Health Risk Prediction
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Challenges of EHR Data
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Wang et al., Hierarchical Pretraining on Multimodal Electronic 
Health Records, EMNLP’23

Wang et al., Unity in Diversity: Collaborative Pre-training Across 
Multimodal Medical Sources, ACL’24
Wang et al., FedMeKI: A Benchmark for Scaling Medical
Foundation Models via Federated Knowledge Injection, under review
Wang et al., FedKIM: Adaptive Federated Knowledge Injection into 
Medical Foundation Models, under review
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Unity in Diversity: Collaborative Pre-training Across Multimodal Medical 
Sources

Xiaochen Wang, Junyu Luo, Jiaqi Wang, Yuan Zhong, Xiaokun Zhang, 
Yaqing Wang, Parminder Bhatia, Cao Xiao and Fenglong Ma

Proceedings of the 62nd Annual Meeting of the Association for 
Computational Linguistics (ACL 2024)
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Issues of Existing Work

• Data Scarcity • Limited Downstream Tasks

23
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Challenges of Cross-Source Pretraining 

• A small portion of overlapped patients

24

MIMIC-IVMIMIC-CXR 14,620

22.36%

45.19%
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Challenges of Cross-Source Pretraining 

• No perfect alignment for a patient’s data from multiple sources

25
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Challenges of Cross-Source Pretraining 

• Hard to model implicit yet informative relationships among patients

26
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MedCSP: Medical Cross-Source Pre-training
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Intra-source Pre-training

• Modality Encoding

• Ideal Solution: pair-wise modality-level contrastive learning

28

Source Index

Modality Index

Patient Index

Record Index

Time

Source ! Source !′
Patient

Intra-source Pre-training (Sec. 3.3)

Cross-source Pre-training (Sec. 3.4)

Records

Records

Modality
Embedding
Record
Embedding

Overlapped

So
ur
ce
-s
pe
ci
fic

En
co

di
ng

(S
ec

.3
.2

)

M
EDC

SP Training
(Sec.3.5)

High Computational Complexity

Images Text



Healthcare Foundation Models: From Pre-training to Fine-tuning

Intra-source Pre-training

• Alignment-based Contrastive Learning
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Cross-source Pre-training

• NO Explicit Alignment
• Same Patients Across Different Sources
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Cross-source Pre-training

• NO Explicit Alignment
• Patients with Similar Cohorts Across Different Sources
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MedCSP Training

32

⋯

⋯

Modality
Embedding

Record
Embedding

Positive

Negative

!!,#$ "!,#,%$

Records

Records

Modality
Embedding

Record
Embedding

Records

Source
!

Source
!′

Same
Patient

Time

Time

< "

Positive

Negative

Modality
Embedding

Record
Embedding

Records

Source
!

Source
!′

Time

Time Cross-source
Relation

!
! ! !

!
!

! Diagnosis
Similarity

Intra-source Pre-training

Cross-source Pre-training

Same 
Patients

Different 
Patients



Healthcare Foundation Models: From Pre-training to Fine-tuning

Experiments

• Pre-training and Downstream Data
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Evaluation on EHR Source

• In-ICU Criticality & Readmission Prediction
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Evaluation on Radiological Source

• Text-image Retrieval
• Assess the model’s ability to associate radiological images with corresponding 

textual descriptions correctly

35
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Evaluation on Radiological Source

• Zero-shot Image Classification
• Categorize medical images into established categories without fine-

tuning

36
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Challenges of EHR Data

Multi-sourced

Wang et al., FedMeKI: A Benchmark for Scaling 
Medical Foundation Models via Federated 
Knowledge Injection, under review
Wang et al., FedKIM: Adaptive Federated 
Knowledge Injection into Medical Foundation 
Models, under review

37

Overlapped Patients

Training from Scratch
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Wang et al., Unity in Diversity: Collaborative 
Pre-training Across Multimodal Medical 
Sources, ACL’24

Fine-tuning Existing Medical
Foundation Models Without

Constraints?
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FedMeKI: A Benchmark for Scaling Medical Foundation Models via Federated 
Knowledge Injection

Jiaqi Wang∗, Xiaochen Wang∗, Lingjuan Lyu, Jinghui Chen and Fenglong Ma
(under review)

FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation 
Models

Xiaochen Wang∗, Jiaqi Wang∗, Houping Xiao, Jinghui Chen and Fenglong Ma
(under review)
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Federated Learning

• Federated Learning (FL) 
aims to collaboratively 
train a machine learning 
(ML) model while keep 
the data decentralized.

39

McMahan et al. "Communication-efficient 
learning of deep networks from decentralized 
data." Artificial intelligence and statistics. 
PMLR, 2017. 

Server Initialized model

Client Client Client Client



Healthcare Foundation Models: From Pre-training to Fine-tuning

Client

Federated Learning

• Federated Learning (FL) 
aims to collaboratively 
train a machine learning 
(ML) model while keep 
the data decentralized.
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McMahan et al. "Communication-efficient 
learning of deep networks from decentralized 
data." Artificial intelligence and statistics. 
PMLR, 2017. 
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Federated Learning

• Federated Learning (FL) 
aims to collaboratively 
train a machine learning 
(ML) model while keep 
the data decentralized.

41
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ClientClientClient

Federated Learning

• Federated Learning (FL) 
aims to collaboratively 
train a machine learning 
(ML) model while keep 
the data decentralized.

42
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McMahan et al. "Communication-efficient 
learning of deep networks from decentralized 
data." Artificial intelligence and statistics. 
PMLR, 2017. 
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Client

Federated Learning

• Federated Learning (FL) 
aims to collaboratively 
train a machine learning 
(ML) model while keep 
the data decentralized.
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Fine-tuning

44

https://www.datacamp.com/tutorial/fine-tuning-large-language-models

Centralized 
Medical Data!
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Existing Medical Foundation Models

45

Limited modality 
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FedMeKI

• A New Task
• Federated Medical Knowledge Injection into Medical Foundation Models

• A Comprehensive Medical Dataset
• Eight Medical Tasks
• Seven Medical Modalities

46

https://github.com/psudslab/FEDMEKI
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FedMeKI

• A Novel Federated Knowledge Injection Platform

47

C
lie

nt
 

M
od

el
A

gg
re

ga
te

d 
M

od
el

Inject

Update

Foundation 
M

odel

Upload

Download

Public Data

Private Data Private Data Private Data

Server

Client

Images Signals Vital 
Signs

Input 
Output

Lab
Results

ENC ENC ENC ENC ENC

Representation

DEC DEC DEC DEC

Lung Opacity 
Detection

COVID-19 
Detection

ECG Abnormal 
Detection

Mortality 
Prediction

Task
Prompt

Public
Data

Representation

G
eneration

UpdateFederated
Aggregated Method

FedAvg
FedProx

Data Module
Data Extraction

Data Preprocessing

Data Split

Training
Tasks

Validation
Tasks

Public Data
Training Data
Testing Data

Testing Data

(a) Platform Overview

(d) Client Model
Aggregation

(b) Data Module

(e) Federated Knowledge Injection into Medical
Foundation Models

(c) Multi-modal Multi-task Client Training

Personalized/Adaptive/
Differential Privacy-
based FL Methods

!! !" !#

!$

⋯ ⋯
"! "" "#

"% ℱ



Healthcare Foundation Models: From Pre-training to Fine-tuning

Data Preparation

48
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Single-task evaluation for training tasks
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Single-task evaluation for training tasks
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Multi-task evaluation for training tasks
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Multi-task evaluation for training tasks
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Zero-shot evaluation for validation tasks
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FedMeKI: A Benchmark for Scaling Medical Foundation Models via Federated 
Knowledge Injection

Jiaqi Wang∗, Xiaochen Wang∗, Lingjuan Lyu, Jinghui Chen and Fenglong Ma
(under review)

FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation 
Models

Xiaochen Wang∗, Jiaqi Wang∗, Houping Xiao, Jinghui Chen and Fenglong Ma
(under review)
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A More Advanced Model
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Tasks and Modalities
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Zero-shot Evaluation
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Wang et al., Hierarchical Pretraining on Multimodal Electronic 
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Multimodal Medical Sources, ACL’24
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Recent Advances in Predictive Modeling with 
Electronic Health Records

Jiaqi Wang, Junyu Luo, Muchao Ye, Xiaochen Wang, Yuan Zhong, Aofei
Chang, Guanjie Huang, Ziyi Yin, Cao Xiao, Jimeng Sun, Fenglong Ma

August 9th at 11:30 | Session: MTA: Health and medicine
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Thank you!

Any questions?
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