Learning Healthcare Foundation Models: From Pre-training to Fine-tuning

Fenglong Ma, Ph.D.

College of Information Sciences and Technology Pennsylvania State University fenglong@psu.edu

Personal Website: <u>https://fenglong-ma.github.io/</u> Penn State Data Science Lab: <u>https://psudslab.github.io/</u>

https://blogs.nvidia.com/blog/what-are-foundation-models/

Foundation Models in General Domain

Medical Foundation Models

• LLaVA-Med

https://github.com/microsoft/LLaVA-Med

LLaWA-Med Chatbot Describe the image Image: Image:</td

Image + Text

What is the likely associated condition?

The presence of scattered hemorrhages in the retina is likely associated with diabetic retinopathy, which is a common complication of diabetes that affects the eyes.

Multimodal Electronic Health Records (EHR)

National Trends in Hospital and Physician Adoption of EHR

Office-based Physicians Hospitals

Trends in Hospital & Physician EHR Adoption

Office of the National Coordinator for Health Information Technology. 'National Trends in Hospital and Physician Adoption of Electronic Health Records,' Health IT Quick-Stat #61.

As of 2021, nearly 4 in 5 office-based physicians (78%) and nearly all non-federal acute care hospitals (96%) adopted a certified EHR. This marks substantial 10-year progress since 2011 when 28% of hospitals and 34% of physicians had adopted an EHR.

PennState

Ideal Healthcare/Medical Foundation Models

https://hai.stanford.edu/news/how-foundation-models-can-advance-ai-healthcare

Challenges of EHR Data

Hierarchical

Wang et al., <u>Hierarchical Pretraining on Multimodal Electronic</u> <u>Health Records</u>, EMNLP'23

Hierarchical Pretraining on Multimodal Electronic Health Records

Xiaochen Wang, Junyu Luo, Jiaqi Wang, Ziyi Yin, Suhan Cui, Yuan Zhong, Yaqing Wang and Fenglong Ma

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP 2023)

Hierarchical Pretraining on Multimodal Electronic Health Records

• Prediction tasks vary across hierarchies.

Hierarchical Pretraining on Multimodal Electronic Health Records

• Multimodal and heterogeneous EHR data

MedHMP: <u>Hierarchical</u> <u>Multimodal</u> Pretraining for <u>Med</u>icine

• Bottom-to-up Pretraining

Stay-level Self-supervised Pretraining

• Clinical Feature Reconstruction

Admission-level Pretraining

- Admission-level Feature Encoding
 - ICD Codes & Drug Codes

 $\mathbf{c}_i = \mathrm{MLP}_c(\mathcal{C}_i), \mathbf{g}_i = \mathrm{MLP}_g(\mathcal{G}_i).$

Clinical Note

 $I_i = ClinicalT5(L_i)$

Clinical Monitoring Readings

$$\begin{split} \hat{\mathbf{b}}_{i}^{j} &= \text{Softmax}(\frac{\mathbf{W}_{h}^{Q} \langle \mathbf{h}_{i}^{j}, \mathbf{d} \rangle \cdot \mathbf{W}_{h}^{K} \langle \mathbf{h}_{i}^{j}, \mathbf{d} \rangle}{\sqrt{d_{r}}}) \cdot \mathbf{W}_{h}^{V} \langle \mathbf{h}_{i}^{j}, \mathbf{d} \rangle, \\ \mathbf{b}_{i}^{j} &= \text{MaxPooling}(\text{LayerNorm}(\langle \mathbf{h}_{i}^{j}, \mathbf{d} \rangle + \hat{\mathbf{b}}_{i}^{j})), \end{split}$$

Admission-level Pretraining

• Intra-modality Mask Code Prediction

Admission-level Pretraining

• Inter-modality Contrastive Learning

Admission-level Pretraining Loss

Training MedHMP

Experiments

- Stay-level Evaluation
 - Acute respiratory failure (ARF)
 - Shock
 - Mortality
 - Within 48 hours

Task	ARF		Sho	ck	Mortality		
Metric	AUROC	AUPR	AUROC	AUPR	AUROC	AUPR	
F-LSTM	69.67	10.57	70.28	23.09	81.55	48.62	
F-CNN	69.61	10.68	69.27	23.51	80.71	42.29	
RAIM	59.38	8.42	66.20	20.02	77.17	39.96	
DCMN	68.98	10.07	68.68	21.72	80.05	42.93	
MEDHMP	71.66	14.34	71.04	24.19	82.17	47.52	

• Admission-level Evaluation

- Readmission prediction
- Within 30 days

Model	AUROC	AUPR
BertLstm	63.35	7.24
LstmBert	60.67	6.84
BertCnn	63.07	7.19
CnnBert	61.59	7.04
BertStar	61.28	6.84
StarBert	60.67	6.84
BertEncoder	61.94	6.82
EncoderBert	60.57	7.00
MEDHMP	67.77	9.34

Experiments

• Patient-level Evaluation

• Health Risk Prediction

Database	N	AIMIC-	III		TriNetX								
Task	H	leart Fail	ure	H	Heart Failure			COPD			Amnesia		
Metric	AUPR	F1	KAPPA	AUPR	F1	KAPPA	AUPR	F1	KAPPA	AUPR	F1	KAPPA	
LSTM _a	57.83	59.40	35.86	50.16	46.08	29.26	50.16	49.34	34.64	48.68	49.64	34.46	
LSTM	57.83	56.70	33.03	48.20	44.44	26.64	49.52	47.76	33.44	47.92	48.80	32.98	
Dipole _a	59.71	60.50	37.68	47.70	41.86	25.52	48.92	41.06	28.30	48.74	45.78	30.78	
Dipole	59.43	58.63	36.03	47.16	40.16	24.28	49.44	39.48	27.86	48.36	45.63	30.40	
RETAIN _a	68.71	66.20	47.12	58.16	52.18	35.64	57.62	50.66	38.36	62.70	56.50	43.90	
RETAIN	67.76	65.56	45.63	57.50	50.88	34.52	57.40	49.85	37.36	62.52	56.32	43.66	
$AdaCare_a$	58.40	59.47	35.77	57.63	47.98	32.03	54.06	47.10	34.70	62.62	52.56	41.54	
AdaCare	59.40	57.58	35.84	55.43	45.13	31.43	56.63	46.60	34.53	61.62	50.54	39.22	
HiTANet _a	69.42	68.44	50.01	60.12	50.48	36.08	64.04	54.46	43.38	67.54	58.18	47.78	
HiTANet	70.36	66.60	46.60	54.76	47.92	32.04	60.10	52.40	39.93	63.08	54.60	43.44	

Challenges of EHR Data

Hierarchical

Wang et al., <u>Hierarchical Pretraining on Multimodal Electronic</u> <u>Health Records</u>, EMNLP'23

Unity in Diversity: Collaborative Pre-training Across Multimodal Medical Sources

Xiaochen Wang, Junyu Luo, Jiaqi Wang, Yuan Zhong, Xiaokun Zhang, Yaqing Wang, Parminder Bhatia, Cao Xiao and Fenglong Ma

Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024)

Issues of Existing Work

• Data Scarcity

• Limited Downstream Tasks

Challenges of Cross-Source Pretraining

• A small portion of overlapped patients

Challenges of Cross-Source Pretraining

• No perfect alignment for a patient's data from multiple sources

Challenges of Cross-Source Pretraining

• Hard to model implicit yet informative relationships among patients

MedCSP: Medical Cross-Source Pre-training

Ideal Solution: pair-wise modality-level contrastive learning

High Computational Complexity

Intra-source Pre-training

Alignment-based Contrastive Learning

Cross-source Pre-training

• NO Explicit Alignment

Same Patients Across Different Sources

Cross-source Pre-training

- NO Explicit Alignment
 - Patients with Similar Cohorts Across Different Sources

Experiments

• Pre-training and Downstream Data

Stage	Source	Dataset	# of Patients	# of Records		
Protraining	EHR	MIMIC-IV	32,355	41,230		
	Medical Image	MIMIC-CXR	14,620	156,837		
	Source	Dataset	Predictive Task	Total	Positive	Negative
	EHR		ARF within 48 hours	5,038	402	4,636
Downstream		MIMIC-III	Shock within 48 hours	7,182	693	6,489
Downstream			Readmission within 30 days	11,695	1,581	10,114
	Medical Image	MIMIC-CXR	Image Text Retrieval	1,202	-	-
	ivicultar illage	COVID-19	Image Classification	13,808	3,616	10,192

Evaluation on Radiological Source

• Text-image Retrieval

• Assess the model's ability to associate radiological images with corresponding textual descriptions correctly

Methods		I	Precisio	on @ <i>K</i>			Recall @K					
Wiethous	1	5	10	20	50	100	1	5	10	20	50	100
CLIP	0.17	0.18	0.17	0.13	0.14	0.12	0.08	0.67	1.16	1.75	4.63	7.79
MedCLIP	0.08	0.10	0.08	0.09	0.08	0.08	0.04	0.23	0.44	1.03	2.07	4.21
BiomedCLIP	0.50	0.53	0.43	0.39	0.31	0.26	0.46	2.29	3.49	5.89	11.79	18.73
PubMedCLIP	0.25	0.13	0.16	0.15	0.15	0.12	0.11	0.39	0.96	1.71	4.30	7.42
CXRCLIP	0.08	0.10	0.11	0.09	0.09	0.08	0.03	0.24	0.58	0.96	2.77	4.61
LLaVAMed	0.17	0.13	0.12	0.12	0.11	0.10	0.11	0.44	0.82	1.66	3.90	7.00
MEDCSP	12.06	6.41	4.45	2.97	1.64	1.04	8.74	21.91	29.51	38.04	50.49	61.74

Evaluation on Radiological Source

- Zero-shot Image Classification
 - Categorize medical images into established categories without finetuning

Table 3: Performance(%) comparison of the zero-shot image classification task on the COVID-19 dataset.

Methods	Precision	Recall	F1
CLIP	26.01	64.91	37.14
MedCLIP	17.80	37.28	24.10
PubMedCLIP	66.67	0.11	0.22
BiomedCLIP	97.54	21.93	35.80
CXRCLIP	30.49	96.03	47.43
LLaVAMed	26.18	100.00	41.50
MEDCSP	71.98	55.00	62.36

Challenges of EHR Data

Wang et al., <u>Unity in Diversity: Collaborative</u> <u>Pre-training Across Multimodal Medical</u> <u>Sources</u>, ACL'24

Multi-sourced

Fine-tuning Existing Medical Foundation Models Without Constraints?

Wang et al., <u>FedMeKI: A Benchmark for Scaling</u> <u>Medical Foundation Models via Federated</u> <u>Knowledge Injection</u>, under review Wang et al., <u>FedKIM: Adaptive Federated</u> <u>Knowledge Injection into Medical Foundation</u> <u>Models</u>, under review

FedMeKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection Jiaqi Wang*, Xiaochen Wang*, Lingjuan Lyu, Jinghui Chen and Fenglong Ma (under review)

FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models

Xiaochen Wang*, Jiaqi Wang*, Houping Xiao, Jinghui Chen and Fenglong Ma (under review)

 Federated Learning (FL) aims to collaboratively train a machine learning (ML) model while keep the data decentralized.

 Federated Learning (FL) aims to collaboratively train a machine learning (ML) model while keep the data decentralized.

McMahan et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.

• Federated Learning (FL) aims to collaboratively train a machine learning (ML) model while keep the data decentralized.

 Federated Learning (FL) aims to collaboratively train a machine learning (ML) model while keep the data decentralized.

McMahan et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.

 Federated Learning (FL) aims to collaboratively train a machine learning (ML) model while keep the data decentralized.

We would like the final aggregated model to be as good as the centralized solution (ideally), or at least better than what each client can learn on its own

https://www.datacamp.com/tutorial/fine-tuning-large-language-models

Existing Medical Foundation Models

Medical Foundation Model	Modalities	Tasks
MMedLM2 (Qiu et al., 2024)	Text	Question-answering
LLava-Med(Liu et al., 2023a)	Text, Image	Visual Question-answering
Med-Flamingo(Yang et al., 2023)	Text, Image	Visual Question-answering
PMC_LLAMA(Lee et al., 2023)	Text	Question-answering
BiomedGPT(Gu et al., 2021)	Text, Image	Visual Question-answering
BioMedLM(Lewis et al., 2020)	Text	Question-answering
		Clinical concept extraction
		Medical relation extraction
GatorTron(Hao et al., 2020)	Text	Semantic textual similarity
		Natural language inference
		Question-answering
Med-PaLM(Singhal et al., 2022)	Text	Question-answering
ChatDoctor(Li et al., 2023)	Text	Question-answering

Limited modality and task adaptability

FedMeKI

- A New Task
 - Federated Medical Knowledge Injection into Medical Foundation Models
- A Comprehensive Medical Dataset
 - Eight Medical Tasks
 - Seven Medical Modalities

https://github.com/psudslab/FEDMEKI

FedMeKI

• A Novel Federated Knowledge Injection Platform

Data Preparation

Table 1: Details of data split, where we deploy 5 clients on the FEDMEKI platform.

Туре	Task	Total Samples	Total Training (5 Clients)	Public Data (Server)	Development (Server)	Testing (Server)
	Lung Opacity Detection	18,406	12,880	1,849	1,841	1,836
Training	COVID-19 Detection	13,808	9,665	1,380	1,380	1,383
Tasks ECG Abnorr	ECG Abnormal Detection	21,797	15,259	2,179	2,180	2,179
	Mortality Prediction	38,129	26,690	3,812	3,812	3,813
	Enlarged Cardiomediastinum Detection	234	×	×	×	234
Validation	Sepsis Prediction	1,000	X	×	×	1,000
Tasks	MedVQA	1,000	×	×	×	1,000
	Signal Noise Clarification	1,000	×	×	×	1,000

Single-task evaluation for training tasks

Single-task evaluation for training tasks

Tack	Metric	MMedI M_2		Fed	Avg		FedProx				
Lask	Meth	WINTEUL/WI-2	FedAvg _s	$FedAvg_s^+$	FedAvg [*]	$\mathbf{FedAvg}_{s}^{\mathcal{F}}$	FedProx _s	FedProx ⁺	FedProx [*]	$\mathbf{FedProx}_{s}^{\mathcal{F}}$	
	Accuracy	X	95.86	94.44	96.02	89.42	95.70	96.08	95.70	91.23	
Lung Opacity	Precision	X	97.40	93.81	96.70	84.69	97.49	97.11	95.23	87.76	
Detection	Recall	X	94.01	95.58	95.58	97.16	94.11	95.27	96.53	96.52	
	F1	X	95.31	94.69	96.14	90.50	95.77	96.18	95.87	91.93	
	Accuracy	X	99.35	99.48	99.28	92.34	99.13	99.42	99.13	84.16	
COVID-19	Precision	×	99.71	99.70	100.00	93.59	99.71	99.42	99.71	77.27	
Detection	Recall	X	97.72	94.30	97.15	74.92	96.87	98.29	96.87	53.27	
	F1	X	98.71	96.93	98.55	79.15	98.21	98.85	98.27	63.07	
ECC	Accuracy	X	67.68	66.83	57.86	43.15	79.41	80.51	57.77	45.25	
Abnormal	Precision	X	69.13	80.65	89.56	56.97	89.04	89.06	87.34	60.85	
Detection	Recall	X	80.78	56.24	31.61	11.22	73.88	76.00	32.47	17.80	
Detection	F1	X	74.50	66.27	46.72	18.74	80.75	82.01	47.34	27.55	
	Accuracy	X	91.98	91.66	91.61	84.11	91.98	90.12	91.61	82.41	
Mortality	Precision	X	70.00	52.86	58.33	16.35	71.05	36.45	58.33	13.87	
Prediction	Recall	X	8.70	11.42	2.17	21.43	8.39	22.98	2.17	16.64	
	F1	×	15.47	18.88	4.19	18.55	15.00	28.19	4.19	15.13	

Table 2: Benchmark performance of single-task evaluation for training tasks.

Multi-task evaluation for training tasks

Multi-task evaluation for training tasks

Table 3: Benchmark performance of multi-task evaluation for training tasks. Note that the performance of **ECG Abnormal Detection** and **Mortality Prediction** is the same as that shown in Table 2 since the modalities of these two tasks are non-overlapped with others.

Tack	Motric	MMedI M-2		Fed	Avg		FedProx			
TaskMeLung Opacity DetectionAcF1F1COVID-19 DetectionPreF1F1	Meth	MINICULINI-2	FedAvg _m	\mathbf{FedAvg}_m^+	\mathbf{FedAvg}_m^*	$\mathbf{FedAvg}_m^\mathcal{F}$	FedProx _m	$\mathbf{FedProx}_m^+$	FedProx [*] _m	$\mathbf{FedProx}_m^{\mathcal{F}}$
	Accuracy	X	95.42	94.23	94.88	95.48	94.77	96.24	96.41	93.13
Lung Opacity	Precision	X	99.66	93.51	93.68	98.22	99.54	97.22	97.63	93.74
Detection	Recall	×	91.48	95.48	96.64	92.95	90.33	95.48	95.37	92.95
	F1	X	95.39	94.48	95.13	95.51	94.71	96.34	96.49	93.35
	Accuracy	X	99.06	98.99	99.28	98.34	99.06	99.20	98.99	86.11
COVID-19	Precision	X	99.42	98.56	99.14	96.07	99.13	98.85	98.56	65.09
Detection	Recall	X	96.87	97.44	98.01	97.44	97.15	98.01	97.44	97.72
	F1	×	98.12	97.99	98.57	96.75	98.13	98.43	97.99	78.13

Zero-shot evaluation for validation tasks

Task (Modalities)	Metric	MMedLM-2	$ \mathbf{FedAvg}_m^{\mathcal{F}} $	$ \textbf{FedProx}_m^{\mathcal{F}} $
	Accuracy	X	58.54	57.26
Enlarged Cardiomediastinum	Precision	X	53.33	52.57
Detection (medical image)	Recall	X	88.07	84.40
	F1	×	66.04	64.78
	Accuracy	X	39.00	39.80
Sepsis Prediction	Precision	X	2.61	3.57
(48 clinical features)	Recall	X	55.17	75.86
	F1	×	4.98	6.81
MadVOA	BLEU	X	1.20	1.20
(modical image + text)	ROUGE	X	2.43	3.42
(medical image + text)	METEOR	×	1.07	2.83
Signal Noise Clarification	BLEU	X	0.06	0.04
(signal + taxt)	ROUGE	X	0.29	0.23
(signal + text)	METEOR	×	1.88	0.63

FedMeKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection Jiaqi Wang*, Xiaochen Wang*, Lingjuan Lyu, Jinghui Chen and Fenglong Ma (under review)

FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models

Xiaochen Wang*, Jiaqi Wang*, Houping Xiao, Jinghui Chen and Fenglong Ma (under review)

A More Advanced Model

Tasks and Modalities

Tack Type	Toolz	Modality									
lask Type	TASK	Image	Signal	Vital signs	Lab events	Input	Output	Text			
	COVID-19 Detection (CD)	\checkmark	X	X	×	X	X	X			
Training	Lung Opacity Detection (LOD)	\checkmark	X	X	×	X	X	X			
ITanning	ECG Abnormal Detection (EAD)	X	\checkmark	X	×	X	X	X			
	Mortality Prediction (MP)	×	×	\checkmark	\checkmark	\checkmark	\checkmark	X			
	Enlarged Cardiomediastinum Detection (ECD)	\checkmark	X	×	×	X	X	X			
	Pleural Effusion Detection (PED)	\checkmark	X	X	×	X	X	X			
	Atelectasis Detection (AD)	\checkmark	X	X	×	X	X	X			
Validation	Ectopic Beats Detection (EBD)	X	\checkmark	×	×	X	X	X			
Vanuation	Sepsis Prediction (SP)	X	X	\checkmark	\checkmark	\checkmark	\checkmark	X			
	MedVQA-RAD (MR)	\checkmark	X	×	×	X	X	\checkmark			
	MedVQA-Slake (MS)	\checkmark	X	×	×	X	X	\checkmark			
	Signal Noise Clarification (SNC)	×	\checkmark	×	×	×	×	\checkmark			

Table 2: Tasks and modalities in this study.

Zero-shot Evaluation

(b) FedProx-based Knowledge Injection Performance.

Summary

Hierarchical

Wang et al., <u>Hierarchical Pretraining on Multimodal Electronic</u> <u>Health Records</u>, EMNLP'23

<u>Foundation Models via Federated Knowledge Injection</u>, under review Wang et al., <u>FedKIM: Adaptive Federated Knowledge Injection into</u> <u>Medical Foundation Models</u>, under review

Recent Advances in Predictive Modeling with Electronic Health Records

Jiaqi Wang, Junyu Luo, Muchao Ye, Xiaochen Wang, Yuan Zhong, Aofei Chang, Guanjie Huang, Ziyi Yin, Cao Xiao, Jimeng Sun, Fenglong Ma

August 9th at 11:30 | Session: MTA: Health and medicine

