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Image + Text

Medical Foundation Models
* LLaVA-Med

Describe the image

The image is a fundus photo, which is a picture of the back of the eye. It shows a few scattered

hemorrhages, which are small areas of bleeding within the retina.
What is the likely associated condition?

The presence of scattered hemorrhages in the retina is likely associated with diabetic retinopathy, which is
a common complication of diabetes that affects the eyes.

https://github.com/microsoft/LLaVA-Med
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Multimodal Electronic Health Records (EHR)
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| Findings:
| The cardiac silhouette is

| enlarged and has a globular
! appearance. Mild bibasilar
| dependent atelectasis. No
| pneumothorax or large

| pleural effusion No acute

| Text

| Cardiomegaly with
| globular appearance of the
| cardiac silhouette

5 Considerations would

| include pericardial effusion
| or dilated cardiomyopathy.
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National Trends in Hospital and Physician Adoption of EHR

Trends in Hospital & Physician EHR Adoption
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an EHR.
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ldeal Healthcare/Medical Foundation Models
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https://hai.stanford.edu/news/how-foundation-models-can-advance-ai-healthcare
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Challenges of EHR Data

Wang et al., FedMeKI: A Benchmark for Scaling Medical

Foundation Models via Federated Knowledge Injection, under review
Wang et al., FedKIM: Adaptive Federated Knowledge Injection into
Medical Foundation Models, under review

Wang et al., Hierarchical Pretraining on Multimodal Electronic
Health Records, EMNLP’23
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Hierarchical Pretraining on Multimodal Electronic Health Records

Xiaochen Wang, Junyu Luo, Jiaqi Wang, Ziyi Yin, Suhan Cui, Yuan Zhong,
Yaqging Wang and Fenglong Ma

Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2023)




Hierarchical Pretraining on Multimodal Electronic Health Records

* Prediction tasks vary across hierarchies.
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Hierarchical Pretraining on Multimodal Electronic Health Records

* Multimodal and heterogeneous EHR data
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MedHMP: Hierarchical Multimodal Pretraining for Medicine

* Bottom-to-up Pretraining

Patient Admission . .
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Stay-level Self-supervised Pretraining

e Clinical Feature Reconstruction
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Admission-level Pretraining

* Admission-level Feature Encoding
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Admission-level Pretraining

* Intra-modality Mask Code Prediction
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Admission-level Pretraining

* Inter-modality Contrastive Learning
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Admission-level Pretraining Loss
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Training MedHMP
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Experiments

e Stay-level Evaluation * Admission-level Evaluation
* Acute respiratory failure (ARF)  Readmission prediction
* Shock * Within 30 days
* Mortality Model AUROC AUPR
e Within 48 hours BertLstm 63.35 7.24
LstmBert 60.67 6.84
Task ARF Shock Mortality BertCnn 63.07 7.19
Metric AUROC AUPR | AUROC AUPR | AUROC AUPR CnnBert 61.59 7.04
F-LSTM 69.67 10.57 70.28 23.09 81.55 48.62
F-CNN 69.61 10.68 | 6927 2351 | 8071 4229 BertStar 61.28 6.84
RAIM 59.38 8.42 66.20 20.02 | 77.17  39.96 StarBert 60.67 6.84
DCMN 68.98  10.07 | 68.68 2172 | 80.05 4293 BertEncoder | 61.94 6.82
MEDHMP 71.66 14.34 71.04 24.19 82.17 47.52 EncoderBert 60.57 7.00
MEDHMP 67.77 9.34
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Experiments

e Patient-level Evaluation
 Health Risk Prediction

Database MIMIC-III TriNetX

Task Heart Failure Heart Failure COPD Amnesia
Metric AUPR Fl1 KAPPA || AUPR Fl KAPPA | AUPR Fl1 KAPPA | AUPR Fl KAPPA
LSTM, 5783 5940 35.86 50.16 46.08 29.26 50.16 49.34 34.64 48.68 49.64 34.46
LSTM 5783 56.70 33.03 48.20 4444 26.64 4952 4776 33.44 4792 4880 32.98
Dipole, 59.71 60.50 37.68 4770 41.86 25.52 4892 41.06 28.30 48.74 45.78 30.78
Dipole 5943 58.63 36.03 47.16 40.16 24.28 4944 3948 27.86 48.36 45.63 30.40
RETAIN, | 68.71 6620 47.12 58.16 52.18 35.64 57.62 50.66 38.36 62.70 56.50 43.90
RETAIN 67.76 65.56 45.63 57.50 50.88 34.52 5740 4985 37.36 62.52 56.32 43.66
AdaCare, | 58.40 5947 35.77 57.63 4798 32.03 54.06 47.10 34.70 62.62 52.56 41.54
AdaCare 59.40 5758 35.84 5543 45.13 3143 56.63 46.60 34.53 61.62 50.54 39.22
HiTANet, @ 69.42 68.44 50.01 60.12 5048 36.08 64.04 5446 43.38 67.54 58.18 47.78
HiTANet 7036 66.60 46.60 5476 4792 32.04 60.10 5240 3993 63.08 54.60 4344
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Challenges of EHR Data

Wang et al., FedMeKI: A Benchmark for Scaling Medical

Foundation Models via Federated Knowledge Injection, under review
Wang et al., FedKIM: Adaptive Federated Knowledge Injection into
Medical Foundation Models, under review

Wang et al., Hierarchical Pretraining on Multimodal Electronic
Health Records, EMNLP’23
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Unity in Diversity: Collaborative Pre-training Across Multimodal Medical
Sources

Xiaochen Wang, Junyu Luo, Jiaqi Wang, Yuan Zhong, Xiaokun Zhang,
Yaqing Wang, Parminder Bhatia, Cao Xiao and Fenglong Ma

Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (ACL 2024)

22



Issues of

e Data Scarcity

Existing Work

-

e Limited Downstream Tasks
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Challenges of Cross-Source Pretraining

A small portion of overlapped patients

22
MIMIC-CXR 14,620 MIMIC-IV

L 9%
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Challenges of Cross-Source Pretraining

* No perfect alighment for a patient’s data from multiple sources

Stero,

.,:\I@Zc Labs |a
EEDIEG o 3
T Sl progir——] 21071 |

— br"j nin ;“ ‘][ = /\g/dL\ T—A

MIMIC-IV

MIMIC-CXR

include pericardial effusion
| or dilated cardiomyopathy.
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Challenges of Cross-Source Pretraining

* Hard to model implicit yet informative relationships among patients

RN R,

MIMIC-IV MIMIC-CXR MIMIC-IV
11 ! 11 11

11 !
Similar? N Similarz __A
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MedCSP: Medical Cross-Source Pre-training

Intra-source Pre-training (Sec. 3.3) ]
\
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Text

Intra-source Pre-training
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[ High Computational Complexity J
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Intra-source Pre-training

* Alignment-based Contrastive Learning

Patient Index Records Modalit
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Cross-source Pre-training

* NO Explicit Alignment
e Same Patients Across Different Sources
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Cross-source Pre-training

* NO Explicit Alignment
e Patients with Similar Cohorts Across Different Sources

6 Records oo T @ Modality
Source ‘ Embedding
S ~ 1 4 0
. Record eXp(Sim(Cg,r, C‘Zg’?,rﬁ)/T)
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Experiments

* Pre-training and Downstream Data

Stage Source Dataset # of Patients # of Records
Pretraining EHR MIMIC-IV | 32,355 41,230
Medical Image | MIMIC-CXR | 14,620 156,837
Source Dataset Predictive Task Total Positive Negative

ARF within 48 hours 5,038 402 4,636

Downstream EHR MIMIC-IIT | Shock Yvit.hin 4$ hf)urs 7,182 693 6,489

Readmission within 30 days 11,695 1,581 10,114

Medical Image MIMIC-CXR | Image Text Retrieval 1,202 - -
COVID-19 Image Classification 13,808 3,616 10,192

@ PennState
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MIMIC-II & MIMIC-IV

EvaluatiOn on EHR Source MedHMP uses more training EHR
data than MedCSP for the EHR tasks!

* In-ICU Criticality & Readmission Prediction v

I MIMIC-IV
ARF Shock Mortality |
17 28 55 I
| AUPR AUROC
" 2 45 | s BertLstm s
I I 35 ! s LstmBert s
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&&* Qpé Q_S‘ Qc@ 823“ &c? %@‘ '@* Qﬁs § @6 bc?q é é\ &e & bc?‘z
g & & s & & I BN BertStar | E—
: s StarBert  E—
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70 80 I
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I I 11 8 5 0 35 70
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JOCa e S FET TS ST 1 Results (%) of the readmission task
|
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Evaluation on Radiological Source

* Text-image Retrieval

* Assess the model’s ability to associate radiological images with corresponding
textual descriptions correctly

Methods Precision @ K Recall @ K

1 5 10 20 50 100 1 5 10 20 50 100
CLIP 0.17 0.18 0.17 0.13 0.14 0.12 | 008 0.67 1.16 1775 463 7.79
MedCLIP 0.08 0.10 0.08 0.09 008 008|004 023 044 103 207 4.21

BiomedCLIP | 0.50 0.53 043 039 031 026|046 229 349 589 11.79 18.73
PubMedCLIP | 0.25 0.13 0.16 0.15 0.15 0.12 | 0.11 039 096 171 430 7.42
CXRCLIP 0.08 0.10 0.11 0.09 0.09 008003 024 058 09 277 4.6l
LLaVAMed 0.17 0.13 0.12 0.12 0.11 0.10 | 0.11 044 082 166 390 7.00
MEDCSP 12.06 6.41 445 297 1.64 1.04 | 8.74 2191 29.51 38.04 5049 61.74
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Evaluation on Radiological Source

e Zero-shot Image Classification

« Categorize medical images into established categories without fine-

tuning
Table 3: Performance(%) comparison of the zero-shot

image classification task on the COVID-19 dataset.

Methods Precision Recall F1
CLIP 26.01 6491 37.14
MedCLIP 17.80 37.28 24.10

PubMedCLIP 66.67 0.11 0.22
BiomedCLIP 97.54 21.93 35.80

CXRCLIP 30.49 96.03 47.43
LLaVAMed 26.18 100.00 41.50
MEDCSP 71.98 55.00 62.36
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Challenges of EHR Data

Multi-sourced

_+_

Overlapped Patients

Training from Scratch [Tl

Centralized Training
- ) « v
¢ 0

Pre-training Across Multimodal Medical
Sources, ACL'24

goao
goao
-] 8ale
1

Wang et al., Unity in Diversity: Collaborative

Fine-tuning Existing Medical
Foundation Models Without
Constraints?

- J

Wang et al., FedMeKI: A Benchmark for Scaling
Medical Foundation Models via Federated
Knowledge I[njection, under review

Wang et al., FedKIM: Adaptive Federated
Knowledge Injection into Medical Foundation
Models, under review
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FedMeHI: A Benchmark for Scaling Medical Foundation Models via Federated
Knowledge Injection
Jiagi Wang+, Xiaochen Wangx, Lingjuan Lyu, Jinghui Chen and Fenglong Ma
(under review)

FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation
Models
Xiaochen Wangx, Jiaqi Wangx*, Houping Xiao, Jinghui Chen and Fenglong Ma
(under review)
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Federated Learning

- Federated Learning (FL) Server @ Initialized mode
aims to collaboratively

train a machine learning
(ML) model while keep
the data decentralized.

McMahan et al. "Communication-efficient

learning of deep networks from decentralized

data." Artificial intelligence and statistics.

PMLR, 2017. Client Client Client Client
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Federated Learning

* Federated Learning (FL) Server @ Initialized model
learning of deep networks from decentralized

aims to collaboratively
train a machine learning |
(ML) model while keep |
data." Artificial intelligence and statistics. D
PMLR, 2017. Client Client Client Client

the data decentralized.

McMahan et al. "Communication-efficient
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Federated Learning

* Federated Learning (FL) Server
aims to collaboratively
train a machine learning
(ML) model while keep
the data decentralized.

Local Model
Training

Client Client
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Federated Learning

* Federated Learning (FL) Model }
aims to collaboratively el { Aggregation
train a machine learning
(ML) model while keep
the data decentralized.

McMahan et al. "Communication-efficient
learning of deep networks from decentralized
data." Artificial intelligence and statistics.

PMLR, 2017. Client Client

@ PennState Healthcare Foundation Models: From Pre-training to Fine-tuning



Federated Learning

* Federated Learning (FL) Server
aims to collaboratively
train a machine learning
(ML) model while keep
the data decentralized.

@ Aggregated model

4 )

We would like the final aggregated model to
be as good as the centralized solution
(ideally), or at least better than what each
client can learn on its own

Client Client Client Client
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https://www.datacamp.com/tutorial/fine-tuning-large-language-models
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Existing Medical Foundation Models

Medical Foundation Model Modalities | Tasks
MMedLLM2 (Qiu et al., 2024) Text Question-answering
LLava-Med(Liu et al., 2023a) Text, Image | Visual Question-answering
Med-Flamingo(Yang et al., 2023) | Text, Image | Visual Question-answering p N
PMC_LLAMA(Lee et al., 2023) Text Question-answering
BiomedGPT(Gu et al., 2021) Text, Image | Visual Question-answering Limited modal ity
BioMedLM(Lewis et al., 2020) Text Ql?e§t10n—answer1ng | and task
Clinical concept extraction .
Medical relation extraction ada pta bil |ty
GatorTron(Hao et al., 2020) Text Semantic textual similarity L )
Natural language inference
Question-answering
Med-PalLM(Singhal et al., 2022) Text Question-answering
ChatDoctor(Li et al., 2023) Text Question-answering
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FedMeKI

* A New Task
* Federated Medical Knowledge Injection into Medical Foundation Models

A Comprehensive Medical Dataset

* Eight Medical Tasks M FedMEKI
« Seven Medical Modalities BB data_preprocess
_ ™ document
https.//github.com/psudslab/FEDMEKI
Y README.md
0

requirements.txt
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FedMeKI

* A Novel Federated Knowledge Injection

Federated
Aggregated Method

FedAvg
FedProx

Server

Personalized/Adaptive/
Differential Privacy-

Model

\IXIXI/ =
4 AR D!

Aggregated

Public Data

PPOA
uonepunoq

Platform

—— e e e e e e e e e = ey

uollelauss

L based FL Methods ) 0 )
(d) Client Model | L _ — — — - ————————— (e) Federated Knowledge Injection into Medical
Aggregation Download : Client ) Foundation Models .
Data Module W : Lung Opacity COVID-19 ECG Abnormal Mortality
) 1 Detection Detection Detection Prediction
Data Extraction 23 | |
S g (", g - (" (‘) DEC DEC DEC DEC
Data Preprocessing O = : : A 0 A 0
t ’ . Representation
X 1 1 "
Datifpllt > Private Data | Private Data | Private Data A A A A A
— : — D, ] D, ] | (‘) ENC ENC ENC ENC ENC
Validation ! Training X a— X A A A A A
Tasks | Tasks | o— - 'j’\“ T S '
e E -H= =k Py 2 B €
esting Data || Training Data 1 1 Vital Lab Input
. [ || Y | I i
L I Testing Data | II : I-I-I " . mages Signals Signs Results Output ’

(b) Data Module

(a) Platform Overview

(c) Multi-modal Multi-task Client Training
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Data Preparation

Table 1: Details of data split, where we deploy 5 clients on the FEDMEKI platform.

Total Trainin Public Data | Development | Testin

Type Task Total Samples (5 Clients) ; (Server) (Sereer) (Serverg)
Lung Opacity Detection 18,406 12,880 1,849 1,841 1,836
Training | COVID-19 Detection 13,808 9,665 1,380 1,380 1,383
Tasks ECG Abnormal Detection 21,797 15,259 2,179 2,180 2,179
Mortality Prediction 38,129 26,690 3,812 3,812 3,813

Enlarged Cardiomediastinum Detection 234 X X X 234

Validation | Sepsis Prediction 1,000 X X X 1,000
Tasks MedVQA 1,000 X X X 1,000
Signal Noise Clarification 1,000 X X X 1,000

@ PennState
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Single-task evaluation for training tasks

|
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Single-task evaluation for training tasks

Table 2: Benchmark performance of single-task evaluation for training tasks.

. FedAvg FedProx

Task Metric MMedLM-2 FedAvg, FedAvg' | FedAvg® FedAvg/ || FedProx, FedProx! | FedProx® FedProx)
Accuracy X 95.86 94.44 96.02 89.42 95.70 96.08 95.70 91.23
Lung Opacity | Precision X 97.40 93.81 96.70 84.69 97.49 97.11 95.23 87.76
Detection Recall X 94.01 95.58 95.58 97.16 94.11 95.27 96.53 96.52
F1 X 95.31 94.69 96.14 90.50 95.77 96.18 95.87 91.93
Accuracy X 99.35 99.48 99.28 92.34 99.13 99.42 99.13 84.16
COVID-19 | Precision X 99.71 99.70 100.00 93.59 99.71 99.42 99.71 77.27
Detection Recall X 97.72 94.30 97.15 74.92 96.87 98.29 96.87 53.27
F1 X 98.71 96.93 98.55 79.15 98.21 98.85 98.27 63.07
ECG Accuracy X 67.68 66.83 57.86 43.15 79.41 80.51 57.77 45.25
Abnormal Precision X 69.13 80.65 89.56 56.97 89.04 89.06 87.34 60.85
Detection Recall X 80.78 56.24 31.61 11.22 73.88 76.00 32.47 17.80
Fl1 X 74.50 66.27 46.72 18.74 80.75 82.01 47.34 27.55
Accuracy X 91.98 91.66 91.61 84.11 91.98 90.12 91.61 82.41
Mortality Precision X 70.00 52.86 58.33 16.35 71.05 36.45 58.33 13.87
Prediction | Recall X 8.70 11.42 2.17 2143 8.39 22.98 2.17 16.64
Fl1 X 15.47 18.88 4.19 18.55 15.00 28.19 4.19 15.13
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Multi-task evaluation for training tasks
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Multi-task evaluation for training tasks

Table 3: Benchmark performance of multi-task evaluation for training tasks. Note that the perfor-
mance of ECG Abnormal Detection and Mortality Prediction is the same as that shown in Table 2
since the modalities of these two tasks are non-overlapped with others.

. FedAvg FedProx

Task Metric MMedLM-2 FedAvg,, FedAvg' | FedAvg® FedAvg/ || FedProx,, FedProx; | FedProx’, FedProx;
Accuracy X 95.42 94.23 94.88 95.48 94.77 96.24 96.41 93.13
Lung Opacity | Precision X 99.66 93.51 93.68 98.22 99.54 97.22 97.63 93.74
Detection Recall X 01.48 95.48 96.64 92.95 90.33 95.48 95.37 92.95
F1 X 95.39 94.48 95.13 95.51 94.71 96.34 96.49 93.35
Accuracy X 99.06 98.99 99.28 98.34 99.06 99.20 98.99 86.11
COVID-19 | Precision X 99.42 98.56 99.14 96.07 99.13 98.85 98.56 65.09
Detection Recall X 96.87 97.44 98.01 97.44 97.15 98.01 97.44 97.72
F1 X 98.12 97.99 98.57 96.75 98.13 98.43 97.99 78.13

@ PennState Healthcare Foundation Models: From Pre-training to Fine-tuning




Zero-shot evaluation for validation tasks

Task (Modalities) Metric MMedLM-2 || FedAvg’ | FedProx’
Accuracy X 58.54 57.26
Enlarged Cardiomediastinum | Precision X 53.33 52.57
Detection (medical image) Recall X 88.07 84.40
F1 X 66.04 64.78
Accuracy X 39.00 39.80
Sepsis Prediction Precision X 2.61 3.57
(48 clinical features) Recall X 55.17 75.86
F1 X 4.98 6.81
BLEU X 1.20 1.20
(medi MedVi (§?+ exy | ROUGE X 243 3.42
METEOR X 1.07 2.83
. . o s BLEU X 0.06 0.04
S‘gnal(ggrfj fltggca“on ROUGE X 0.29 0.23
METEOR X 1.88 0.63
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FedMeKI: A Benchmark for Scaling Medical Foundation Models via Federated
Knowledge Injection
Jiagi Wang+, Xiaochen Wangx, Lingjuan Lyu, Jinghui Chen and Fenglong Ma
(under review)

FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation
Models
Xiaochen Wangx, Jiaqi Wangx*, Houping Xiao, Jinghui Chen and Fenglong Ma
(under review)
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(b) Federated Knowledge Injection into Medical Foundation Model
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Tasks and Modalities

Table 2: Tasks and modalities in this study.

Modality
Task Type | Task Image | Signal | Vital signs | Lab events | Input | Output | Text
COVID-19 Detection (CD)

Lung Opacity Detection (LOD)
ECG Abnormal Detection (EAD)

Mortality Prediction (MP)

Enlarged Cardiomediastinum Detection (ECD)
Pleural Effusion Detection (PED)

Atelectasis Detection (AD)

Ectopic Beats Detection (EBD)

Sepsis Prediction (SP)

MedVQA-RAD (MR)

MedVQA-Slake (MS)

Signal Noise Clarification (SNC)

Training

Validation

I RNENE N ENENENIEEENEN
X %] XN X x| X[ XN x|
3| 3| | N 3| 3| X[ x| N x| x| X%
3| 3| | N 3| 3| X[ x| N x| x| x
3| 3| | N 3| 3| X[ x| N x| x| X%
3| 3| 3| N 3| 3| X[ x| x| x| x
\\\x‘xxxx x‘xxx
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Zero-shot Evaluation

e MMedLM2

—— FedPlug
MR —— FedPlug,
(max: 17.94) —— FedKIM
SNC SpP
(max: 12.20 max: 95.00)

MS ECD
(max: 2.93) ax: 64.53)
PED EBD
(max: 50.43) (max: 50.00)

AD
(max: 51.28)

(a) FedAvg-based Knowledge Injection Performance.

e MMedLM2

—— FedPlug
MR —— FedPlug,
(max: 33.85) —— FedKIM
SNC SP
(max: 30.68 max: 97.00)

MS ECD
(max: 7.6d0 ax: 62.39)
PED EBD
(max: 58.12) (max: 50.40)

AD
(max: 58.94)

(b) FedProx-based Knowledge Injection Performance.
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Summary

Hierarchical Multi-sourced

Patient Admission
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15 hour ves ¢ hour Multimodal Medical Sources, ACL' 24

Wang et al., FedMeKI: A Benchmark for Scaling Medical

Foundation Models via Federated Knowledge Injection, under review
Wang et al., FedKIM: Adaptive Federated Knowledge Injection into
Medical Foundation Models, under review

Wang et al., Hierarchical Pretraining on Multimodal Electronic
Health Records, EMNLP’23
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Recent Advances in Predictive Modeling with
Electronic Health Records

Jiagi Wang, Junyu Luo, Muchao Ye, Xiaochen Wang, Yuan Zhong, Aofei
Chang, Guanjie Huang, Ziyi Yin, Cao Xiao, Jimeng Sun, Fenglong Ma

August 9th at 11:30 | Session: MTA: Health and medicine
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Thank you!

Any questions?



